skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jarmoshti, Javad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Cellular biophysical metrics exhibit systematic alterations during processes, such as metastasis and immune cell activation, which can be used to identify and separate live cell subpopulations for targeting drug screening. Image‐based biophysical cytometry under extensional flows can accurately quantify cell deformability based on cell shape alterations but needs extensive image reconstruction, which limits its inline utilization to activate cell sorting. Impedance cytometry can measure these cell shape alterations based on electric field screening, while its frequency response offers functional information on cell viability and interior structure, which are difficult to discern by imaging. Furthermore, 1‐D temporal impedance signal trains exhibit characteristic shapes that can be rapidly templated in near real‐time to extract single‐cell biophysical metrics to activate sorting. We present a multilayer perceptron neural network signal templating approach that utilizes raw impedance signals from cells under extensional flow, alongside its training with image metrics from corresponding cells to derive net electrical anisotropy metrics that quantify cell deformability over wide anisotropy ranges and with minimal errors from cell size distributions. Deformability and electrical physiology metrics are applied in conjunction on the same cell for multiparametric classification of live pancreatic cancer cells versus cancer associated fibroblasts using the support vector machine model. 
    more » « less